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Dynamic air/liquid pockets for guiding microscale
flow
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Joanna Aizenberg3,5

Microscale flows of fluids are mainly guided either by solid matrices or by liquid–liquid

interfaces. However, the solid matrices are plagued with persistent fouling problems, while

liquid–liquid interfaces are limited to low-pressure applications. Here we report a dynamic

liquid/solid/gas material containing both air and liquid pockets, which are formed by partially

infiltrating a porous matrix with a functional liquid. Using detailed theoretical and experi-

mental data, we show that the distribution of the air- and liquid-filled pores is responsive to

pressure and enables the formation and instantaneous recovery of stable liquid–liquid

interfaces that sustain a wide range of pressures and prevent channel contamination. This

adaptive design is demonstrated for polymeric materials and extended to metal-based sys-

tems that can achieve unmatched mechanical and thermal stability. Our platform with its

unique adaptive pressure and antifouling capabilities may offer potential solutions to flow

control in microfluidics, medical devices, microscale synthesis, and biological assays.
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Controlling microscale flows of gas and liquid is essential in
design, fabrication, and implementation of microchannel
systems for applications ranging from bioassays, micro-

valves, chemical and biological sensing, drug delivery, and
environmental analysis to production of high-value fluids and
petrochemicals1–11. The flow is mainly guided either by solid
matrices or by liquid–liquid interfaces. Although solid matrices
are ubiquitous in most devices that are designed to regulate
microscale flows, their application is plagued with the problem of
fouling when contaminating components (notably large organic
and biological molecules) present in the transport fluid irrever-
sibly adhere to the solid surfaces12–14. Strategies to combat
fouling include either the direct use of low-surface-energy matrix
materials (such as polydimethylsiloxane (PDMS) and fluor-
opolymers)13 or chemical modification of high-surface-energy
solids (such as glass)14; however, these strategies often provide
only transient or limited antifouling functions, and a long-term
solution remains elusive. Guiding flows with liquid–liquid inter-
faces can eliminate the fouling on solid surfaces, but the
liquid–liquid interfaces resulted from surface-directed coating are
only stable for low pressures on the order of 1 kPa, which in turn
strictly limits their applications2,3.

Here we introduce a dynamic, hybrid liquid/solid/gas material
system that guides microscale flows with high-performance
antifouling, self-recovery, and liquid-gating properties. The
design of such a dynamic system allows us to achieve extra-
ordinary function that is impossible with conventional
materials15,16. Our idea is inspired by the structure of the liquid
linings in gastrointestinal tract that separate epithelium from the
highly corrosive, low-pH environment in the stomach or from the
waste flow in the colon17. These structures have evolved into
micro-porous surfaces composed of cavities filled with protective

mucus that forms a stable liquid defense layer dynamically sup-
plied to the interface. Following this rationale, we design an
adaptive air/liquid pocket transport system (ADAPTS) for guid-
ing microscale flows, which consists of an interconnected porous
matrix partially infiltrated with a functional liquid and a micro-
channel constructed inside. Importantly, the functional liquid not
only protects the solid matrix from the fouling similar to the
mucus lining in biological systems, it can also reversibly enter or
exit the microchannel by diffusion from or wicking into the
porous matrix, which can be further controlled by external sti-
muli (for example, pressure).

Results
Design of the adaptive air/liquid pocket transport system.
Inspired by the structure of the liquid linings in gastrointestinal
tract (Fig. 1a and Supplementary Fig. 1), functional ADAPTS are
designed following two criteria: the porous matrix should be
preferentially wetted by the functional liquid but not by the
transport liquid in the microchannel; the microchannel should be
initially fully filled with the functional liquid. Microchannels can
be constructed inside the ADAPTS matrix with the laser cutting
technique and be fabricated practically into any size, shape, and
dimension (Supplementary Figs 2 and 3). To satisfy the first
criterion, we chose Krytox®103 as the functional liquid and
polytetrafluoroethylene (PTFE) as the porous matrix18 in our
initial experiments. Driven by the capillary pressure, the func-
tional liquid infiltrates the air pockets from the microchannel
spontaneously (Fig. 1b). To satisfy the second criterion, one could
fill the matrix completely with the functional liquid and then
balance the capillary pressure by controlling the pressure in the
air pockets (PA). When the air pocket pressure overcomes the
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Fig.1 Design of the adaptive air/liquid pocket transport system (ADAPTS). a Schematic of ADAPTS, consisting of a porous matrix partially infiltrated with a
functional liquid (shown in blue). The distribution of the functional liquid-filled pores (liquid pockets) and air-filled pores (air pockets) changes with the
pressure in the air pocket (PA). b ADAPTS guides the microscale flow (shown in red) in the square microchannel (shown in dark blue). The transport liquid
initiates a flow path when the applied pressure (ΔP) is beyond a threshold pressure (Po) and is confined inside the microchannel under a critical pressure
(PL). After removal of the pressure, the functional liquid refills the microchannel, and ADAPTS recovers immediately to the original state. c Diagram
showing the two critical pressures (Po, PL) as a function of the channel size D. The operating range of ADAPTS is marked in light green. The inset shows the
invasion of the transport liquid into ADAPTS with average pore size ξ
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capillary pressure, the liquid pockets transform into the air
pockets with surfaces wetted by the functional liquid (Fig. 1b).

As discussed below, this design enables intrinsic liquid-gating,
instantaneous self-recovery, and ability to function at high
pressure inside the microchannel. When a transport fluid enters
the microchannel initially filled with the functional liquid, it
displaces the functional liquid to form a cylindrical pathway in
the microchannel (Fig. 1c). The liquid–liquid displacement will
take place only if the applied pressure (ΔP) is equal to or greater
than a threshold pressure (Po), which depends on the size of
microchannel D and the interfacial tension between the two
liquids γFT via 4γFT=D, where the subscripts F and T denote the
functional and transport liquid, respectively (Supplementary
Table 1). The transport liquid will invade the porous matrix
when the pressure surpasses another critical pressure, PL=
4γFT=ξ, where ξ is the average size of the air/liquid pocket (e.g.,
average pore size). The critical pressure PL defines the upper
boundary of the operating pressure. If the applied pressure is
removed, the functional liquid will refill the microchannel, and
the system restores its original state instantaneously (Supple-
mentary Fig. 4). The two critical pressures (Po, PL) can be
rationally tuned by controlling the pore size distribution,
interfacial tensions, and channel sizes. As an example, Fig. 1c
presents a diagram for designing and operating the ADAPTS with
an average pore size of 5 μm, for which the critical pressure PL is
around 45 kPa, nearly two orders of magnitude higher than the
pressures achievable in simple liquid–liquid interfaces2,3.

Dynamic control of air/liquid pockets. Experimental observa-
tions of this dynamic, reversible redistribution of the air and
liquid pockets inside the porous matrix are shown in Fig. 2. As
seen from the confocal microscopic images in Fig. 2a, the porous
matrix is partially filled with the functional liquid; the dye-labeled

functional liquid moves into the porous matrix with increasing
applied pressure, filling the available air pockets over time; as the
pressure is removed, the liquid is displaced from the filled pores
into the channel and the initial distribution of the air and liquid
pockets is restored. Optical images in Fig. 2b illustrate this effect
on a macroscopic scale, providing further evidence of the
dynamic nature of the ADAPTS matrix in which the transition
between the liquid and air pockets is reversible and responsive to
external stimuli. The presence of the air pockets offers therefore
an important, unique replenishment mechanism—the ability to
store and release the displaced functional liquid.

Dynamic liquid–liquid interface. In contrast to macroscopic
channels with diameters of a few millimeters, in which the
surface-held functional liquid gets depleted (often completely) by
the transport fluid19, ADAPTS exhibits extremely stable
liquid–liquid interfaces inside the microchannel, due to the ability
not only to temporarily store the functional liquid in the air
pockets but also to retain a finite amount of the functional liquid
at the corners20 and on the replenishable porous surfaces of the
microchannel21 (Fig. 3a, b). Confocal images clearly show a
cylindrical shape of the transport liquid inside a square-shaped
microchannel and the retention of the functional liquid at the
channel corners that is stable even at high flow rates (Fig. 3a).
This remaining functional liquid plays a role of a physical barrier
separating the solid matrix from the transport liquid (Fig. 3b).
The thickness of functional liquid layer reduces with time due to
dragging by the transport liquid, and we can model this effect as
follows21–23:
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Fig. 2 Pressure-induced redistribution of air and liquid pockets. a Confocal microscopic studies. Functional liquid is silicone oil with dye DFSB-K175. The
liquid pockets' filling ratio (determined by measuring the fluorescence intensity in the air pockets) dynamically changes with the applied pressure over
time. Confocal images of air pockets in their original unfilled state (image 1), during their transition into liquid pockets by pressure-induced diffusion (image
2→3), and the recovery of the initial air-filled state after the removal of pressure (image 4→5). The corresponding schematics show the location of the
images. Scale bar is 100 μm. b Optical microscopy studies of dynamic distribution of air and liquid pockets under applied pressure. Functional liquid is
Krytox®103. The cross-section view of the ADAPTS microchannel to illustrate the dynamic change of liquid pockets’ distribution, and schematic of the
changes of liquid pockets’ distribution under varying pressures. The corresponding experimental images show the top view of the air/liquid pockets’
distribution. Scale bar is 2 mm. The graph shows the air pockets' filling ratio and its change with the applied pressure over time (determined by measuring
the area occupied by the air pockets that appear translucent in optical images)
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where h is the thickness of functional liquid layer, t is the time, Q
is the volumetric flow rate, L is the channel length, D is the
channel size, Ca is the Capillary number 4QµF/πD2, Re is the
Reynolds number 4QρT/πDµT, ρ is the density, and μ is the
viscosity (Supplementary Table 2). This equation holds when the
thickness of the functional liquid layer is much smaller than the
channel size (e.g., h«D), which is consistent with our experimental
observation. It allows us to estimate the behavior of the
liquid–liquid interface by tuning geometric factors and material
properties of the system: the retention of the functional liquid
increases with decreasing channel size (Fig. 3c) and with
increasing viscosity of the functional liquid (Fig. 3d). Our
experiments show that the thickness of the functional liquid has
very small variance along the flow direction, and the theoretical
prediction agrees well with our experimental results (Fig. 3e). The
residual functional liquid layer is sheared by the transport liquid,
leading to the reduced thickness of the functional liquid layer,
which moves into the air pockets of the partially filled porous
matrix. Figure 3b further demonstrates that, besides the retention
of functional liquid inside the channel, the porous ADAPTS
matrix provides an additional holding mechanism for the dis-
placed functional liquid, which is reversibly transported and
stored in the air pockets via capillary pressure (Supplementary
Fig. 5). As a result, the ADAPTS possesses a stable functional
liquid interface, which serves as a physical barrier to separate the
transport liquid from the solid matrix, as well as a mechanism to
refill the microchannel with the functional liquid.

Antifouling property. The presence of the stable liquid lining
gives rise to an exceptional antifouling characteristic. To
demonstrate this property, we compare ADAPTS with commonly
used PDMS and liquid-free PTFE microchannels in their ability
to transport flows of aqueous solution of Rhodamine B (RB),
octane, and blood. These transport liquids were chosen as
representative examples to test the antifouling properties, since
RB is a highly sticky organic molecule that attaches to surfaces
through non-specific binding, octane is a good solvent for com-
monly used polymeric materials that often causes damage of the
channel walls, and blood is the most ubiquitous and challenging
biological fluid known to indiscriminately adhere to nearly any
material. Continuous flows of these fluids show no detectable
fouling of the microchannel with ADAPTS (Fig. 4a, b), even after
a long-term operation (Supplementary Fig. 6). In contrast, the
widely used PDMS is contaminated by the RB (Fig. 4a) and
swollen by octane (Fig. 4a). Though considered as a highly non-
adhesive material, traditional dry PTFE microchannel that con-
tains only air-filled pores is significantly contaminated by blood
(Fig. 4b).

Multifunctional microfluidics. Besides antifouling, self-recovery,
and ability to operate at a wide pressure range described above,
ADAPTS also provides other advantageous features, such as
liquid gating and transparency. The functional liquid inside the
ADAPTS microchannel acts as a dynamic liquid gate that con-
trols the entrance of the transport fluid into and its flow through
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Fig. 3 Dynamic liquid–liquid interfaces in the microchannel. a Liquid transport inside the microchannel of ADAPTS matrix. Confocal images of the transport
liquid (Rhodamine B aqueous solution, red) show the cylindrical flow profile in a square microchannel. The cross-section area of the flow varies with the
flow rate. Scale bar is 50 µm. b Remaining functional liquid in the microchannel. Confocal images and corresponding schematics show the stable functional
liquid film (silicone oil lubricant with dye DFSB-K175, blue) at the channel wall for two different flow rates. Scale bar is 20 μm. After removal of the applied
pressure, the functional liquid refills the microchannels. The white dashed lines are added as a reference. c, d Theoretical modeling of the average
thickness, h, of the remaining functional liquid as a function of the flow time for different channel sizes (c) and viscosities of the functional liquid (d). e
Comparison of the experimental and theoretical values for the average thickness of the remaining functional liquid on the channel wall as a function of the
flow rate. The inset shows the confocal image of the microchannel with the functional liquid (in blue), in which the solid lines indicate the measuring
positions. Scale bar is 200 μm (white line in the inset). The flow rate of the transport liquid is 10 µL/min
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the channel, in the range of working pressures between PF and PL
(Fig. 4c and Supplementary Fig. 7). PF refers to the applied
pressure required to initiate a flow pathway of the transport liquid
at a certain flow rate (500 µL/min in Supplementary Fig. 7a). PL
refers to the maximum pressure at which ADAPTS can retain the
flow of transport liquid inside the microchannel (Supplementary
Fig. 7b). In addition, for active liquid gating, the critical pressures
are tunable by controlling the air pocket pressure (PA) (Supple-
mentary Fig. 8). Moreover, due to the scattering of light within
air-filled pockets of PTFE, microchannels made of dry PTFE are
non-transparent, making them unsuitable for observing the flow
in the system. In contrast, high transparency of the ADAPTS
microchannels can be obtained by tuning the refractive index of
the functional liquid to that of the surrounding porous matrix,
which enables an easy optical monitoring and detection of
fluorescent or colored materials (Fig. 4d; Supplementary Fig. 9;
Supplementary Movie 1).

Broad design and material selection. The design of ADAPTS is
readily extended to other material systems that can offer addi-
tional practical advantages. While polymers are widely used to
form microfluidic networks and membranes, their limited ther-
mal and mechanical stability prevents their applications at high
pressures or temperatures. To address these issues and further
enrich the materials options for the ADAPTS design, we have
developed metal-based porous materials (Supplementary Fig. 10)
24. A chemically modified single-layer porous stainless steel was
used to achieve highly stable flow properties and the ability to
operate at significantly higher temperature and flow rate

compared to those made of polymers (Supplementary Fig. 11a-c).
Such microchannel structures can, therefore, offer a simple and
universal solution for antifouling within a stable fluidic network
and be applied to a variety of microchannels within a functio-
nalized solid matrix, infused with a low-surface-tension liquid.
The latter is retained in place due to its ability to move to and
from the air pockets, thus providing a stable “antifouling” liquid
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interface that can dynamically guide microscale flows (Supple-
mentary Fig. 11d).

Discussion
To conclude, we have theoretically and experimentally demon-
strated a dynamic air/liquid pocket system for controlling
microscale flow. The multifunctionality and advantages of the
ADAPTS microfluidics, which may benefit many practical
applications25, are summarized in Fig. 5. The design of ADAPTS
breaks the long-lasting restrictions in microscale flow regulation,
by simultaneously providing a stable, reversible liquid–liquid
interface that enables exceptional antifouling properties against
even the most tenacious contaminants such as biological fluids,
and a robust solid matrix that can sustain high temperature and
pressure. The ease of fabrication of ADAPTS from various
materials, such as diverse commercially available porous matrices
and functional liquids, holds promise for mass production. As the
research on microscale flow regulation continues to push the
limits, the design of ADAPTS would be highly appealing for the
in situ formulation of inks for advanced printing7, biomedical
microfluidics, lab-on-a-chip platforms26, and surface and mem-
brane technologies such as liquid-gated and nanocrack-regulated
membranes27,28. The dynamic air/liquid pockets described here
and the broader applications of ADAPTS design open up
opportunities to dynamically regulate microscale flows in many
areas ranging from drug delivery and microscale reactors for
production of high-value fluids to soft robotics, microfluidic
computational devices29, medical devices, and microchip sensors
for bioassays and environmental analysis30–33.

Methods
Porous membranes. Three types of Teflon membranes were purchased from
Sterlitech Corporation, WA, USA, with the average pore sizes of ≥20 µm (thickness
of ~150 µm), ≥5 µm (thickness of ~200 µm), and ≥200 nm (thickness of ~30 µm).
The membranes with the average pore size of ≥5 µm were evaluated by scanning
electron microscopy (Supplementary Fig. 2a). Thin membranes with the average
pore size of ≥200 nm were used for the confocal experiments to visualize the liquid
transport inside the three-dimensional (3D) microporous matrix.

PDMS channels. Sylgard 184 silicone elastomer base and Sylgard 184 silicone
elastomer curing agent were purchased from Dow Corning Corporation. PDMS
mixed at a 10:1 curing ratio was placed into microchannel molds and cured for 3 h
at 70 °C.

Functional liquids. Krytox®103 (purchased from DuPont (USA) and silicone oil
(purchased from www.sigmaaldrich.com (481939 - Poly(dimethylsiloxane)) were
used as functional liquids.

Preparation of the 3D microporous matrix. First, the high-resolution channel
pattern and 3D arrangement was designed using various suitable software packa-
ges. Versalaser cutting engraving system (CNS, Harvard University) was then used
to cut the channels or ports on the membrane directly (Supplementary Fig. 2b-d).
It is worth mentioning that the dimensions of the microchannels are limited by the
source of the porous membranes and the fabrication technique. Besides the PTFE
membrane and the laser cutting technique used in this study, the design of
ADAPTS can be realized with many other porous membranes and fabrication
approaches, including blade cutting, photolithography, 3D printing, and thermo-
molding technique, and can be therefore easily achieved in various laboratories
without using clean rooms or involving expensive equipment and harsh chemicals.
Second, transparent PMMA sheets and stainless-steel screws were used to seal the
microchannels inside the microporous matrix to avoid the leaking problem. Third,
the functional liquid was infused into the microchannels using a fluid delivery
syringe pump (Harvard Apparatus’ PHD ULTRA CP Syringe Pump) equipped
with syringes (NORM-JECT). With our approach, various complex microchannel
shapes can be generated (Supplementary Fig. 2e) and further arranged in a multi-
layered system by 3D stacking layers method (Supplementary Fig. 3), which makes
it ideal for a variety of specific applications and amenable for mass production.

Test fluids. The test fluids, which include octane (puriss, ≥99.0%) and RB (high-
performance liquid chromatography, ≥97.0%), were obtained from Sigma Aldrich.
Sheep blood in heparin (3 IU/mL) was obtained from HemoStat Laboratories, CA,
USA. RB aqueous solution (RB): RB was dissolved in deionized water (DI) to give

the RB solution at a final concentration of 0.1 mg/mL. Dye DFSB-K175 (from
www.riskreactor.com) was dissolved in octane with 0.10 Vol%. The antifouling
properties have been studied by infusing RB (15 min), octane (15 min), and sheep
whole blood (7 h) with the same flow rate of 10 μL/min at 20 °C.

Fluorescent measurements. Zeiss Confocal Laser Scanning Microscope from Carl
Zeiss Microscopy GmbH, Jena, Germany, (LSM 700) was used for fluorescent and
confocal experiments. For dye RB, the measuring parameters were automatically
set up from the database of Zeiss microscopy system. DFSB-K175 was detected for
a broad wavelength range (≥560 nm) and laser line (488 nm). The fluorescent
particles were detected for a broad wavelength range (≥500 nm) and laser line (488
nm). DI water with a resistivity of 18.2 MΩ·cm was used for the measurements.
Microparticles in the suspension were the surfactant-free fluorescent yellow green
sulfate latex with the diameter of ~1.6 μm (Solid%: 1.9) obtained from Invitrogen.
Fluorescent particles suspension was made using 0.1 mL of the original 1.9%
suspension diluted in 2 mL of H2O, to approximately 0.10 Vol%. The functional
liquid used for confocal images was the silicone oil with dye DFSB-K175.

Data availability. The authors declare that the data supporting the findings of this
study are available within this paper and its Supplementary Information file or
from the corresponding author.
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